Tag Archives: molecular

Reprogramming stem cells may prevent cancer after radiation

The study also shows that this same safeguard of “programmed mediocrity” that weeds out stem cells damaged by radiation allows blood cancers to grow in cases when the full body is irradiated. And by reprogramming this safeguard, we may be able to prevent cancer in the aftermath of full body radiation. “The body didn’t evolve to deal with leaking nuclear reactors and CT scans. It evolved to deal with only a few cells at a time receiving dangerous doses of radiation or other insults to their DNA,” says James DeGregori, PhD, investigator at the CU Cancer Center, professor of Biochemistry and Molecular Genetics at the CU School of Medicine, and the paper’s senior author…

Scientists uncover potential drug to tackle ‘undruggable’ fault in third of cancers

A team of scientists at the Max Planck Institute of Molecular Physiology in Germany has uncovered a new strategy and new potential drug to target an important signalling protein in cells called Ras, which is faulty in a third of cancers. When the Ras protein travels from the centre of a cell to the cell membrane, it becomes ‘switched on’ and sends signals which tell cells to grow and divide. …

A matter of life and death: Cell death proteins key to fighting disease

The research teams from the Walter and Eliza Hall Institute worked together to discover the three-dimensional structure of a key cell death protein called Bak and reveal the first steps in how it causes cell death. Their studies were published in Molecular Cell and Proceedings of the National Academy of Sciences. Programmed cell death, known as apoptosis, occurs naturally when the body has to remove unwanted cells. Chemical signals tell the cell to die by activating the apoptosis proteins Bak and Bax, which break down the ‘energy factory’ of the cell, known as the mitochondria. …

‘Treasure in saliva’ may reveal deadly diseases early enough to treat them

The study, the most comprehensive analysis ever conducted of RNA molecules in human saliva, reveals that saliva contains many of the same disease-revealing molecules that are contained in blood. It was published online today by the peer-reviewed journal Clinical Chemistry and will be published in the journal’s January 2015 special print issue, “Molecular Diagnostics: A Revolution in Progress.” “If we can define the boundaries of molecular targets in saliva, then we can ask what the constituents in saliva are that can mark someone who has pre-diabetes or the early stages of oral cancer or pancreatic cancer — and we can utilize this knowledge for personalized medicine,” said Dr…

Disease decoded: Gene mutation may lead to development of new cancer drugs

Scientists at the University of Michigan and the U-M Health System recently discovered a protein mutation that causes the devastating disease dyskeratosis congenita, in which precious hematopoietic stem cells can’t regenerate and make new blood. People with DC age prematurely and are prone to cancer and bone marrow failure. But the study findings reach far beyond the roughly one in 1 million known DC patients, and could ultimately lead to developing new drugs that prevent cancer from spreading, said Jayakrishnan Nandakumar, assistant professor in the U-M Department of Molecular, Cellular, and Developmental Biology. …

New tool aids stem cell engineering for medical research

“This free platform has a broad range of uses for all types of cell-based investigations and can potentially offer help to people working on all types of cancer,” says Hu Li, Ph.D., investigator in the Mayo Clinic Center for Individualized Medicine and Department of Molecular Pharmacology & Experimental Therapeutics, and co-lead investigator in the two works. “CellNet will indicate how closely an engineered cell resembles the real counterpart and even suggests ways to adjust the engineering.” The network biology platform contains data on a wide range of cells and details on what is known about those cell types. Researchers say the platform can be applied to almost any study and allows users to refine the engineering process. In the long term, it should provide a reliable short cut to the early phases of drug development, individualized cancer therapies, and pharmacogenetics. …