+123 456 7890 1600 Amphitheatre Parkway Mountain View, CA 94043

Study revises theory of how PTEN, a critical tumor suppressor, shuts off growth signals

Today, scientists at Cold Spring Harbor Laboratory (CSHL) publish new evidence explaining precisely how the protein encoded by PTEN (called PTEN) works — specifically, how it is recruited to particular locations in our cells where pro-growth signals need to be shut off. The new evidence, assembled by a team led by CSHL Associate Professor Lloyd Trotman, contradicts a long-held assumption about PTEN function, and could help scientists design more effective drugs to counteract cancer’s hallmark trait, uncontrolled cellular growth…

Read More »

Bacterial biofilms are associated with colon cancer, imaging technique reveals

“This is the first time that biofilms have been shown to be associated with colon cancer, to our knowledge,” says co-author Jessica Mark Welch, a scientist at the Marine Biological Laboratory (MBL) in Woods Hole, Mass. The discovery, led by researchers at the Johns Hopkins Medical Institutions, draws on a novel way to “see” microbial community structure that was developed by Mark Welch and colleagues at the MBL. Called combinatorial imaging, it could potentially be used to clinically diagnose pre-cancerous and cancerous conditions in the ascending colon…

Read More »

Studies target androgen in breast cancer

“We’re on the cusp of a major revolution in the way we treat breast cancer. We’ve known for years that prostate cancer is driven by androgens and now it’s increasingly clear that androgens and androgen receptors can influence many breast cancers as well. AR is actually even more prevalent in breast cancer than estrogen or progesterone receptors. Targeting androgen receptors in breast cancer gives us an new way to attack the disease,” says Jennifer Richer, PhD, investigator at the CU Cancer Center and head of the Richer Laboratory that produced the results. …

Read More »

Immune checkpoint blockade: Powerful cancer therapy influence by genetics

“The genetic signature we have found will be invaluable to understanding the biological mechanisms that drive therapeutic responses to immunotherapy for metastatic melanoma,” says Jedd Wolchok, MD, PhD, director of the Ludwig Collaborative Laboratory and associate director of the Ludwig Center for Cancer Immunotherapy at MSK, who co-led the study with Timothy Chan, MD, PhD, of MSK’s Human Oncology and Pathogenesis Program. “Further, our strategy can now be applied to determine the genetic signatures associated with the efficacy of a number of other immunotherapies and cancers.” Few approaches to treating cancer have generated as much excitement as immunotherapy, in which the immune system is engaged to destroy malignancies. One class of such treatments targets CTLA-4, a molecule expressed on the surface of killer T cells that ordinarily blocks their proliferation…

Read More »

How a molecular Superman protects genome from damage

It’s a familiar scenario, played out hundreds of times in the movies. But the dramatic scene is reenacted in real life every time a cell divides. In order for division to occur, our genetic material must be faithfully replicated by a highly complicated machine, whose parts are tiny enough to navigate among the strands of the double helix. The problem is that our DNA is constantly in use, with other molecular machines continually plucking at its strands to gain access to critical genes. …

Read More »

How premalignant cells can sense oncogenesis, halt growth

Since the 1980s, scientists have known that mutations in a human gene called RAS are capable of setting cells on a path to cancer. Today, a team at Cold Spring Harbor Laboratory (CSHL) publishes experiments showing how cells can respond to an activated RAS gene by entering a quiescent state, called senescence. CSHL Professor Nicholas Tonks and Benoit Boivin, now a University of Montreal Assistant Professor, co-led a team that traced the process in exquisite detail. …

Read More »