Tag Archives: neurology

Researchers identify switch that controls growth of most aggressive brain tumor cells

Findings of their investigation show that the protein RIP1 acts as a mediator of brain tumor cell survival, either protecting or destroying cells. Researchers believe that the protein, found in most glioblastomas, can be targeted to develop a drug treatment for these highly malignant brain tumors. The study was published online Aug. 22 in Cell Reports…

Stopping cholesterol drugs may be associated with increased risk of Parkinson’s

The current study involved 43,810 people in Taiwan who were taking statins and did not have Parkinson’s disease. Taiwan’s compulsory national health insurance program reimbursement policy requests that doctors stop prescribing statins once the patient’s cholesterol reaches the treatment goal, which is contrary to standard treatment in the United States. "This policy allowed us to see whether there was any difference in the risk of Parkinson’s in people who stopped taking statins compared to the ones who kept taking them," said study author Jou-Wei Lin, MD, PhD, of National Taiwan University in Taipei. …

Brain capable of making its own version of Valium, researchers find

The oral drug Valium – also known by its generic name, diazepam – was once popular with doctors in the 1970s as a treatment for seizures brought on by epilepsy.  However, the drug, also used to treat anxiety, has fallen out of favor in recent years as it is prone to abuse and often dangerous if taken in high doses. Now, in light of a recent study, the need for Valium to treat epilepsy may be even further diminished.  Researchers from Stanford University School of Medicine have discovered a naturally occurring protein in the brains of mammals that acts like Valium, stopping certain types of seizures from occurring. Researchers hope that if they are able to discover a way to boost this protein naturally, doctors would no longer have a need to prescribe Valium. The protein, identified as diazepam binding inhibitor (DBI), essentially acts like the brain’s very own brake system, sensing when a seizure is about to occur and arresting the process before it can spiral out of control. “Our thinking on brain circuits and epilepsy has been that our brains have their own ways to control seizures, and this is why most of us aren’t having seizures every day,” study author John Huguenard, professor of neurology and neurological sciences at Stanford, told FoxNews.com.  “But what happens as a seizure starts, a few cells in the brain may get too active, and you get an avalanche of activity that eventually can take up most of the brain circuitry.  The brain’s own ‘Valium’ is acting as an anti-avalanche method, checking things when they’re first starting.” According to Huguenard, the brain has two main groups of nerve cells.  The first type of cells – excitatory cells – are responsible for stimulating other cells and sending messages from one area of the brain to another.   This messaging process, known as excitation, is responsible for communicating what we see, what we smell, what we do, etc. The other key type of cells are known as inhibitory cells, which are responsible for keeping the brain circuitry under control.  If one area of the brain gets too excited and starts to receive too many signals at once, the inhibitory cells kick into gear and slow the process in order to restore balance. “In terms of this form of epilepsy we’ve been studying, if a certain group of brain cells can’t communicate well through this inhibitory process, then (the animals) have seizures,” Huguenard said. The protein DBI is a crucial component of the inhibitory process, as it boosts the actions of an important neurotransmitter called gamma-aminobutyric acid (GABA).  Roughly one-fifth of the inhibitory nerve cells in the brain operate by secreting GABA, which binds to receptors located on excitatory cells, rendering them temporarily unable to fire any more electrical signals.   Without DBI, GABA cannot be enhanced, and the excitatory cells ultimately don’t get the message telling them to calm down.  However, up until now, this function of DBI was not well understood by researchers. To determine exactly how DBI operates in the brains of mammals, Huguenard and his team analyzed a group of bioengineered mice with the DBI gene mutation, meaning their brains were incapable of producing DBI. “When we tested seizures in these animals and tested communication, we found that (the inhibitory process) was ineffective and that the animals had more seizures,” Huguenard said.  “It told us that this gene is producing a product in the brain that is controlling the seizures.” When they re-introduced the DBI-gene back into the brains of these mice, GABA-induced inhibition was restored and the mice suffered from fewer seizures. Benzodiazepine drugs, like Valium, work in a very similar way to DBI by also enhancing GABA-induced inhibition. But they often come at a high cost.  Many who take these medications long-term develop a physical dependence on the drug, experiencing serious withdrawal symptoms if they cease taking it.  Some studies have also found Valium to have an adverse effect on both short-term and long-term cognition. While the researchers only examined the brains of mice, they are optimistic DBI exists similarly in the brains of humans as well.   If the results end up translating to the human mind, Huguenard hopes to find a way to naturally boost DBI in the brain, negating the need for Valium to help control seizures. “The ultimate goal would be to develop new lines of therapy that would take this general approach – taking the brain’s mechanism for dealing with seizures and making them even more effective,” Huguenard said. The research was published May 30 in the journal Neuron.source : http://www.foxnews.com/health/2013/05/30/brain-capable-making-own-version-valium-researchers-find/

Study brings greater understanding of tumor growth mechanism

The study is published in Brain: A Journal of Neurology. Tumour suppressors exist in cells to prevent abnormal cell division in our bodies. The loss of a tumour suppressor called Merlin leads to tumours in many cell types within our nervous systems. There are two copies of a tumour suppressor, one on each chromosome that we inherit from our parents…

Skin cancer may be linked to lower risk of Alzheimer’s disease

The study involved 1,102 people with an average age of 79 who did not have dementia at the start of the study. The participants were followed for an average of 3.7 years. At the start of the study, 109 people reported that they had skin cancer in the past. During the study, 32 people developed skin cancer and 126 people developed dementia, including 100 with Alzheimer’s dementia. …