Tag Archives: biology

Epigenetic changes may explain chronic kidney disease

In a recent Genome Biology paper, Susztak, and her co-corresponding author John Greally from the Albert Einstein College of Medicine, Bronx, NY, found, in a genome-wide survey, significant differences in the pattern of chemical modifications on DNA that affect gene expression in kidney cells from patients with chronic kidney disease versus healthy controls. This is the first study to show that changes in these modifications – the cornerstone of the field of epigenetics – might explain chronic kidney disease. Epigenetics is the science of how gene activity can be altered without actual changes in the DNA sequence. …

Tiny antisense molecules increase ‘good cholesterol’ levels in obese primates

"We have found that targeting both members of the miR-33 microRNA family with a tiny, 8-nucleotide anti-microRNA can increase HDL levels by almost 40 percent," says Anders Näär, PhD, of the MGH Center for Cancer Research, who led the study. "This sets the stage for new therapeutic strategies to treat cardiovascular disease in humans and provides a template for targeting other disease-associated microRNA families." Major regulators of gene expression, microRNAs are segments made up of 20- to 24-nucleotides that bind to complementary strands of messenger RNA, blocking their translation into proteins. A 2010 study led by Näär identified two related microRNAs — miR-33a and miR-33b — that inhibit a protein called ABCA1, which is essential for both the generation of HDL and for the transport of lipids to the liver. …

Plant oil suppresses viability of human prostate cancer cells

"This line of work dates back to the 1980s when the University of Wisconsin groups led by Drs. Charles Elson and Michael Gould discovered the anti-tumor activity of monoterpenes and soon after, sesqui- and di-terpenes." said Dr. Huanbiao Mo, senior author and professor in the Department of Nutrition and Food Sciences. These compounds, widely present in fruits, vegetables and grains, were found to be much more effective in suppressing the growth of tumor cells than that of normal cells. …

Balloon mis-positioning during prostate cancer treatment could affect success of radiation delivery

"Use of a balloon allows you to stabilize the anatomy. But what we show is that imprecision with balloon placement could reduce radiation dose coverage over the intended area," says Moyed Miften, PhD, FAAPM, investigator at the CU Cancer Center and chief physicist at the University of Colorado School of Medicine Department of Radiation Oncology. Specifically, Miften and colleagues including Bernard Jones, Gregory Gan, and Brian Kavanagh studied the technique known as stereotactic body radiation, in which powerful, precisely-targeted radiation is delivered only to cancerous areas of the prostate with the hope of killing tumor tissue. An endorectal balloon is needed to hold the prostate in place while this high dose is delivered…

Working towards personalized cancer treatment

"We all have a unique composition of hereditary variants of genes that affects how both our body and the tumor react to cancer treatment," Ola Myklebost tells us. He is Professor of Molecular Biology in the Department of Biosciences at the University of Oslo, and also holds a post at the Institute for Cancer Research at Oslo University Hospital. Professor Myklebost has now received a grant of NOK 75 million from the Research Council of Norway to develop the idea for next generation cancer treatment — personalized cancer therapy, directed specifically towards the various mutation faults in cancerous tumors…

Study reveals TWEAK-Fn14 as key drug target

TWEAK is a cytokine, or soluble protein, that controls many cellular activities and acts by binding to a cell surface receptor known as Fn14. TWEAK binding to Fn14 triggers a wide range of cellular activities, including blood clotting, inflammation, cell proliferation, cell migration, and the creation of new blood vessels. While many of these activities are beneficial — for example, helping to heal a cut — excessive TWEAK-Fn14 activation also has been linked to tissue damage and degradation, including autoimmune diseases, as well as the survival, migration and invasion of cancer cells. "Our results show that the TWEAK-Fn14 interaction is a viable drug target, and they provide the foundation for further exploration of this system in researching invasive cancers," said Dr. …

Potential drug target to nip cancer in the bud

The research was conducted by Dr Dmitry Bulavin and his team at A*STAR’s Institute of Molecular and Cell Biology (IMCB), with their findings published in the 14 October 2013 issue of the scientific journal, Cancer Cell. The team discovered that Wip1 phosphatase is a key factor that causes point mutations to sprout in human cancers. These types of mutations stem from errors that are made during DNA replication in the body, causing one base-pair in the DNA sequence to be altered. These mutations can cause cancers to take root, or to become resilient to treatment. …

Scientists decipher how the immune system induces liver damage during hepatitis

A study published today in the online edition of The Journal of Clinical Investigation, and carried out by Erwin Wagner’s team, Director of the BBVA Foundation-CNIO Cancer Cell Biology Programme and holder of an ERC Advanced Grant, shows how the immune system ‘attacks’ liver cells during hepatitis by using the AP-1 gene JunB. Latifa Bakiri, one of the study’s authors and a researcher in Wagner’s laboratory details: "The activation of the JunB/AP-1 gene in a subset of immune cells, called NK cells, increases the production of interferon-gamma that attacks liver cells while the organ is suffering from hepatitis." With this discovery, the study’s authors propose a new mechanism by which AP-1 acts as a double-edged sword in the liver: it’s a first line of defence against viruses that cause the disease, but also encourages liver damage depending on the diet or genetics of the patient. …

New trigger for breast cancer metastasis identified

Now, University of Pennsylvania researchers have revealed how a reduction in mitochondrial DNA content leads human breast cancer cells to take on aggressive, metastatic properties. The work, published in the journal Oncogene, breaks new ground in understanding why some cancers progress and spread faster than others and may offer clinicians a biomarker that would distinguish patients with particularly aggressive forms of disease, helping personalize treatment approaches. The study was led by the Penn School of Veterinary Medicine’s Manti Guha, a senior research investigator, and Narayan Avadhani, Harriet Ellison Woodward Professor of Biochemistry in the Department of Animal Biology. Additional Penn Vet collaborators included Satish Srinivasan, Gordon Ruthel, Anna K. …