Tag Archives: kimmel-cancer

Gene linked to tamoxifen-resistant breast cancers — ScienceDaily

The gene, called MACROD2, might also be useful in screening for some aggressive forms of breast cancers, and, someday, offering a new target for therapy, says Ben Ho Park, M.D., Ph.D., an associate professor of oncology in the Kimmel Cancer Center’s Breast Cancer Program and a member of the research team. The drug tamoxifen is used to treat estrogen receptor-positive breast cancers. Cells in this type of breast cancer produce protein receptors in their nuclei which bind to and grow in response to the hormone estrogen. Tamoxifen generally blocks the binding process of the estrogen-receptor, but some estrogen receptor-positive cancers are resistant or become resistant to tamoxifen therapy, finding ways to elude its effects…

Novel agent set for unique clinical test in inflammatory breast cancer

The finding, published online this month in the Journal of Experimental Therapeutics and Oncology, has led to development of a phase 1/2 clinical trial at Kimmel Cancer Center to test the agent, Romidepsin (Istodax™), in combination with nab-paclitaxel (Abraxane™) chemotherapy for advanced inflammatory breast cancer (IBC). …

Common genetic pathway could be conduit to pediatric tumor treatment

In laboratory studies, researchers found that the pathway, called mammalian target of rapamycin (mTOR), was highly active in pediatric low-grade gliomas, and that mTOR activity could be blocked using an experimental drug, leading to decreased growth of these tumors. "We think mTOR could function as an Achilles heel," says study co-author Eric Raabe, M.D., Ph.D., an assistant professor of pediatrics, oncology and pathology at the Johns Hopkins Kimmel Cancer Center. "It drives cancer growth, but when mTOR is inhibited, the tumor falls apart." The work was described Nov…

Molecule drives aggressive breast cancer

The scientists found that excess activity of this gene — EYA1 — also enhances development of breast cancer stem cells that promote resistance to cancer therapy, recurrence, and poor survival. Because EYA1 is an enzyme, the scientists are now working to identify a natural compound that could shut down EYA1 activity, says Richard Pestell, M.D., Ph.D., Director of Kimmel Cancer Center. …