In a developing embryo, many bones form based on cartilage templates. The study found that to form these templates, Lkb1 protein controls the progression of immature, dividing cartilage cells into larger, mature and fully differentiated cartilage cells. Without Lkb1, the population of immature cartilage cells disproportionately increases, leading to skeletal tumors.
The way that Lkb1 controls the differentiation of cartilage cells is by suppressing what’s known as the "mammalian target of rapamycin (mTOR) pathway" — a very important complex of molecules that coordinates growth in response to available nutrients and other factors. Problems with the mTOR pathway have been implicated in a host of human diseases, including diabetes, obesity, depression and many cancers.
The influence of abnormal Lkb1 isn’t restricted to the skeleton, however. Mutant forms of Lkb1 are frequently present in patients with lung, cervical, breast, intestinal, testicular, pancreatic and skin cancers, and in patients with the Peutz-Jeghers syndrome, characterized by benign polyps in the gastrointestinal tract.
"By understanding Lkb1 and the mechanisms that control normal skeletal development, we also learn how we might prevent this development from going awry in cancers and other disorders," said McMahon, who directs the USC Stem Cell initiative and the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC.
source : http://www.sciencedaily.com/releases/2013/11/131114094947.htm