Category Archives: Anti-Cancer Therapy

Golgi trafficking controlled by G-proteins

The study is reported online April 9 in Developmental Cell. “Our work provides the first direct evidence that G proteins are signaling on membranes inside cells, not just at the cell surface as has been widely believed for several decades,” said Pradipta Ghosh, MD, associate professor and senior author…

With three first-in-human trials, therapeutic stem cell science takes a bold step

The procedure, conducted on Sept. 30 under the auspices of the Sanford Stem Cell Clinical Center at UC San Diego Health System and in collaboration with Neuralstem, Inc., a Maryland-based biotechnology firm, is the first of four in the Phase I clinical trial. …

Possible pathway for inhibiting liver, colon cancer found

The international team from CIC bioGUNE, the University of Liverpool and the US research centre USC-UCLA has successfully unravelled the mechanism by which two proteins, MATα2 and MATβ, bind to each other, thereby promoting the reproduction of tumour cells in liver and colon cancers. The study was announced in the latest issue of the open access journal IUCrJ published by the IUCr. This structural data discovery opens up additional research opportunities into drugs that can act on the binding of these proteins, thereby possibly inhibiting cancer cell growth. …

Small molecule shows promise as anti-cancer therapy

In a study described in the January 13 issue of Cancer Cell, Marikki Laiho, M.D., Ph.D., and her colleagues say their work focused on the ability of a chemical dubbed BMH-21 to sabotage the transcription pathway RNA Polymerase pathway (POL I), shutting down the ability of mutant cancer genes to communicate with cells and replicate. Laiho’s research linked the pathway to p53 gene activity. P53 is a tumor suppressor gene, a protein that regulates cell growth, and it is the most frequently mutated suppressor gene in cancer…

Mouse study finds gut microorganisms may determine cancer treatment outcome

NCI scientists found that tumors of germ-free mice (mice completely lacking these microorganisms), or mice treated with antibiotics to deplete the gut of bacteria, were largely impaired in their ability to respond to immunotherapy that slows cancer growth and prolongs survival. The mice were also impaired in their ability to respond to mainstay chemotherapy drugs such as oxaliplatin and cisplatin. These findings in mice may underscore the importance of microorganisms in optimal cancer treatment outcomes in humans. …